🕀 Sa Sep 04 18:32:37 1999

Prof. 2 Bartni D-105 Germa Phone E-mai Websi	Michael Schmiechen ngallee 16 57 Berlin (Tiergarten) any :: +49-(0)30-392 71 64 l: m.schm@t-online.de ite: http://www.t-online.de /home/m.schm	
To wh	nom it may concern	Berlin, September 04, 1999
Sub: here: Ref.:	New ISO/CD 15016 Example Re-evaluation according to the proposed rational method Evaluations of August 10, 24, 29, 1999, Discussion by the German Trials Group at DIN/NSMT on September 01. 1999	including the reduction to the no-wind and no-waves condition based on the added resistance due to waves identified according to the rational method

The present re-evaluation of the new example published in the ISO/CD 15016, circulated 1999.07.29, is including the reduction to the no wind condition.

Concerning the resistance due to waves the author has not yet seriously thought about an adequate, sufficiently simple model, the parameters of which can be identified from the data simultaneously with the parameters of the wind and water resistance models. Consequently, in order to avoid lengthly discussions at this stage, he is taking the crude values provided in the ISO example. The first tests with various, even accepted models of added resistance in waves provided mostly unplausible results, the problems still to be studied.

The change to the one-file organisation without intermediate storage of the data in 'standard format and the change to the symbols of ISO/CD 15016 have been made to improve the readability and direct comparability, respectively, and thus hopefully the acceptability. The values taken from ISO/CD 15016 are plotted in blue and denoted by o's, while the values computed according to the rational procedure are plotted in red and denoted by +'s.

Units	kN := 10^3 ·newton	N := newton	W := watt
Test identification	TID := "23010"	New ISO/CD 15016 example	e
Constants	Length of ship	Diameter of propeller	
	L := 318·m	D := 9.5·m	
	$L := \frac{L}{m}$	$D := \frac{D}{m}$	
	m	m	

Density of sea waterDensity of air $\rho := 1.024 \cdot 10^3 \cdot \text{kg} \cdot \text{m}^{-3}$ $\rho_A := 1.225 \cdot \text{kg} \cdot \text{m}^{-3}$ $\rho := \frac{\rho}{\text{kg} \cdot \text{m}^{-3}}$ $\rho_A := \frac{\rho_A}{\text{kg} \cdot \text{m}^{-3}}$

Data reported from traditional trial measurements

time: row 48		course: row 3			speed over ground: row 4			
1	16.792			5.90	1]		4.409	. <u>m</u> sec
	18.830		ψ ₀ :=	2.90	9	V _G :=	5.561	
	20.826			5.90	1		6.050	
	23.053			2.90	9		7.182	
	24.986			5.90	1		7.218	
t :=	26.682	•hr		= 2.90	•rad		8.082	
	30.597			2.90	9		8.416	
	32.433			5.90	1		7.773	
	34.231			2.90	9		8.437	
	35.849			5.90	1		7.922	
			frequ row	iency o 5	f revolution:	brake p row 6	oower n	neasured:
			frequ row	ency o 5 0.7317	f revolution:	brake p row 6	5711	neasured:
			frequ row	ency o 5 0.7317 0.7300	f revolution:	brake p row 6	5533	neasured:
			frequ row	0.7317 0.7300 0.9267	f revolution:	brake p row 6	5711 5533 11349	neasured:
			frequ row	0.7317 0.7300 0.9267 0.9267	f revolution:	brake p row 6	5711 5533 11349 11140	neasured:
			frequ	0.7317 0.7300 0.9267 0.9267 1.0467	f revolution:	brake p row 6	5711 5533 11349 11140 16200	neasured:
			frequ row	0.7317 0.7300 0.9267 0.9267 1.0467 1.0467	f revolution:	brake p row 6	5711 5533 11349 11140 16200 16190	neasured: ∙kW
			frequ row	0.7317 0.7300 0.9267 0.9267 1.0467 1.0467 1.0933	f revolution:	brake p row 6	5711 5533 11349 11140 16200 16190 18500	neasured: ∙kW
			frequ row	0.7317 0.7300 0.9267 0.9267 1.0467 1.0467 1.0933 1.0950	f revolution:	brake p row 6	5711 5533 11349 11140 16200 16190 18500 18330	neasured: ∙kW
			frequ row	0.7317 0.7300 0.9267 0.9267 1.0467 1.0467 1.0933 1.0950 1.1167	f revolution:	brake p row 6	5711 5533 11349 11140 16200 16190 18500 18330 19450	neasured: ∙kW

Data non-dimensionalized in view of further use in some mathematical subroutines, which by definition cannot handle arguments with (different) dimensions

t :=
$$\frac{t}{hr}$$
 $\psi_0 := \frac{\psi_0}{rad}$ $V_G := \frac{V_G}{m \cdot sec^{-1}}$ $n := \frac{n}{Hz}$ $P_B := \frac{P_B}{W}$

Data normalized for check of consistency

$$i := 0 \dots last(t) - 2$$

$$temp1_i := t_i t := temp1$$

$$temp1_i := \Psi 0_i \Psi 0 := temp1$$

$$temp1_i := V G_i V G := temp1$$

$$temp1_i := n_i n := temp1$$

$$temp1_i := P B_i P B := temp1$$

$$i := 0 \dots last (J_{H,0}) - 1$$

$$i := 0 \dots last (J_{H,1}) - 1$$

$$temp2_i := J_{H,0_i}$$

$$J_{H,0} := temp2$$

$$temp3_j := J_{H,1_j}$$

$$J_{H,1} := temp3$$

$$temp3_j := K_{P,1_i}$$

$$K_{P,1} := temp3$$

Reduced data set evaluated for current velocity and powering characteristic in behind at the trials conditions.

Power supplied

$$\mathbf{i} \coloneqq \mathbf{0} \dots \operatorname{last}(\mathbf{t})$$

$$\mathbf{A}_{\sup_{i,0}} \coloneqq (\mathbf{n}_i)^3 \qquad \qquad \mathbf{A}_{\sup_{i,1}} \coloneqq -(\mathbf{n}_i)^2 \cdot \mathbf{V}_{\mathbf{G}_i}$$

Current velocity

$T_T := 12 \cdot hr + 25 \cdot min$	Average cycle	of tides
$\omega := \frac{2 \cdot \pi}{T_T} \qquad \omega := \omega \cdot hr$	$\omega = 0.506$	
$d_{FM_i} := if(\psi_{0_i} < \pi, 1, -1)$	Direction of c	urrent
$A_{\sup_{i,2}} := (n_i)^2 \cdot d_{FM_i}$		
$A_{\sup_{i,3}} := A_{\sup_{i,2}} \cdot t_i$		
A $\sup_{i \to i} := A \sup_{i \to i} \cos(\omega \cdot t_i)$	Left-inve	rse
-1,4 -1,2 ()	LI(A) :=	r←rows
$A_{\sup_{i,5}} := A_{\sup_{i,2}} \cdot \sin(\omega \cdot t_i)$		$c \leftarrow cols($
$A_{sup} := A_{sup} \cdot (t_i)^2$ Disable	ed!	s← svds(
$r_{i,4}$ $r_{i,2}$ $r_{i,2}$		for $i \in$
$A_{\sup_{i,5}} := A_{\sup_{i,2}} \cdot (t_i)^3$ Disable	ed!	ISV _{i,i}
Least square fit		UV←sv

Least square fit

 $X_{sup} := LI(A_{sup}) \cdot P_B$ **Residua** in terms of power

 $E_{sup} := P_B - A_{sup} \cdot X_{sup}$

Quality of approximation

$$\frac{\left| \begin{array}{c} \mathbf{E} \\ \mathbf{sup} \end{array} \right|}{\left| \begin{array}{c} \mathbf{P} \\ \mathbf{B} \end{array} \right|} = 0.169 \circ \%$$

$$r \leftarrow rows(A)$$

$$c \leftarrow cols(A)$$

$$s \leftarrow svds(A)$$
for $i \in 0.. c - 1$

$$ISV_{i,i} \leftarrow (s_i)^{-1}$$

$$UV \leftarrow svd(A)$$

$$U \leftarrow submatrix(UV, 0, r - 1, 0, c - 1)$$

$$V \leftarrow submatrix(UV, r, r + c - 1, 0, c - 1)$$

$$A inv.left \leftarrow V \cdot ISV \cdot U^T$$

$$A inv.left$$

These residua do not look quite random, but they are so small that changes of the models are not warranted.

$$\operatorname{Stdev}\left(\frac{\operatorname{E}_{\operatorname{sup}}}{10^3}\right) = 24.8$$

Current velocity Rational evaluation

j := 0..3

$$v_j := \frac{X_{sup_{2+j}}}{X_{sup_1}}$$
 $\sqrt{(v_2)^2 + (v_3)^2} = 0.08$

$$\mathbf{V}_{\mathbf{F}.\mathbf{rat}_{i}} \coloneqq \mathbf{v}_{0} + \mathbf{v}_{1} \cdot \mathbf{t}_{i} + \mathbf{v}_{2} \cdot \cos(\boldsymbol{\omega} \cdot \mathbf{t}_{i}) + \mathbf{v}_{3} \cdot \sin(\boldsymbol{\omega} \cdot \mathbf{t}_{i})$$

$$\mathbf{V}_{\mathbf{F}.\mathbf{rat}_{i}} \coloneqq \sum_{j} \mathbf{v}_{j} \cdot (\mathbf{t}_{i})^{j}$$
 Disabled!

Interpolation

m := 100 k := 0.. m
$$T_k := t_0 - 1 + \frac{t_{last(t)} - t_0 + 2}{m} \cdot k$$

V $F.int_k := v_0 + v_1 \cdot T_k + v_2 \cdot \cos(\omega \cdot T_k) + v_3 \cdot \sin(\omega \cdot T_k)$
V $F.int_k := \sum_j v_j \cdot (T_k)^{j}$ Disabled!

ISO/CD evaluation:

current at each run: row 52

$$V_{F.ISO} := \begin{bmatrix} 0.494 \\ 0.527 \\ 0.525 \\ 0.484 \\ 0.442 \\ 0.404 \\ 0.324 \\ 0.296 \end{bmatrix} \cdot \frac{m}{sec}$$

Tidal current amplitude in m/sec

Schmiechen: Re-evaluation of ISO/CD 15016 Example

$$V_{\text{F.ISO}} := \frac{V_{\text{F.ISO}}}{\text{m} \cdot \text{sec}^{-1}}$$

Ship speed relative to water

$$V_{S0.rat_i} := V_{G_i} - V_{F.rat_i} \cdot d_{FM_i}$$

Power parameters, rational

$$p_{rat_{0}} \coloneqq X_{sup_{0}} \qquad p_{rat_{1}} \coloneqq X_{sup_{1}}$$
$$P_{B.rat_{i}} \coloneqq p_{rat_{0}} \cdot (n_{i})^{3} - p_{rat_{1}} \cdot (n_{i})^{2} \cdot V_{s0.rat_{i}}$$

Normalised values

Power required

Power required due to water resistance

$$p \coloneqq 2 \qquad q \coloneqq 2$$

$$k \coloneqq 0 ... p \qquad A_{req_{i,k}} \coloneqq \left(V_{S0.rat_{i}} \right)^{k+q}$$

Additional power required due to wind resistance Relative wind measured

relative wind velocity: relative wind direction: row 7 row 8 13.5 -0.1745 4.0 2.5307 15.0 -0.1745 2.8 2.3562 m V WindR := 0.0873 ∙rad Ψ WindR := 16.0 ·<u>sec</u> 0.7 2.6180 0.4 2.3562 16.5 0.0873

Non-dimensional values, not normalized(!), in coherent units

$$V_{WindR} := \frac{V_{WindR}}{m \cdot sec^{-1}} \qquad \psi_{WindR} := \frac{\Psi_{WindR}}{rad}$$
$$V_{WindR.x_{i}} := V_{WindR_{i}} \cdot cos(\Psi_{WindR_{i}})$$
$$A_{req_{i,3}} := V_{WindR.x_{i}} | V_{WindR.x_{i}} | \cdot V_{S0.rat_{i}}$$

Additional power required due to wave resistance

Sea state observed

Swell state observed

significant wave height (swell)incident angle of wave (swell) mean wave period (swell) $T_{Swell} := \begin{bmatrix} 1.0.57 \\ 10.59 \\ 10.59 \\ 10.59 \\ 11.32 \\ 11.32 \\ 11.32 \\ 11.32 \\ 11.32 \\ 11.32 \end{bmatrix} \cdot ec H_{Swell} := \begin{bmatrix} 2.00 \\ 2.00 \\ 2.00 \\ 2.00 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \end{bmatrix} \cdot m \qquad \Psi_{SwellR} := \begin{bmatrix} 0.6981 \\ -2.4435 \\ 0.6981 \\ -2.4435$ row 15 row 17 row 16 $T_{Swell} := \frac{T_{Swell}}{sec}$ H_{Swell} := $\frac{H_{Swell}}{m}$ $V_{Swell.x_{i}} := -\frac{g \cdot T_{Swell_{i}}}{2 \cdot \pi} \cdot \cos(\psi_{SwellR_{i}})$ $A_{req_{i_{5}}} = (H_{Swell_{i}})^{2} \cdot \left[(V_{S0.rat_{i}})^{3} + (V_{S0.rat_{i}})^{2} \cdot V_{Swell.x_{i}} \right]$

Least square fit

$$X_{req} := LI(A_{req}) \cdot P_B$$

Residua

 $E_{req.rat} = P_B - A_{req} \cdot X_{req}$

relative residua

Quality of approximation

$\left \frac{\text{E}}{\text{req.rat}} \right = 2.293 \text{ °\%}$	E req.IS	$\frac{10}{10} = 5248 \circ \%$
P _B	P B	

Copied from 23010_re-eval-fin4.mcd

According to the comments accompanying the trial data **the swell developed as a typhoon approached. The trial was stopped** a while after 6 runs finished, i. e. after 27 h, **because the swell height became too large, but it was resumed.**

This weather condition may be the reason for the large scatter at runs 6 and 7, else the scatter being quite small.

Scatter analysis

The scatter analysis is the only way to decide on the adequacy of the models. The sample standard deviation according to the rational method

$$\operatorname{Stdev}\left(\frac{\operatorname{E}\operatorname{req.rat}}{10^3}\right) = 337.8$$
 $\operatorname{Stdev}\left(\frac{\operatorname{E}\operatorname{req.ISO}}{10^3}\right) = 773.1$

is considerably smaller than in case of the ISO results.

If the excessive values are excluded

$$E_{red.rat} := E_{req.rat} \qquad E_{red.rat} := 0 \qquad E_{red.rat} := 0$$

$$E_{red.ISO} := E_{req.ISO} \qquad E_{red.ISO} := 0 \qquad E_{red.ISO} := 0$$

the sample standard deviations reduce to:

Stdev
$$\left(\frac{\text{E red.rat}}{10^3}\right) = 92.3$$
 Stdev $\left(\frac{\text{E red.ISO}}{10^3}\right) = 579.5$

The **rational value**, though four times larger than the one obtained in the least square fit of the supplied power (24.8 kW), **is acceptable in view of the low resolution of the wave height observation. In the rational constitutive model systematic effects can no longer be observed, indicating the appropriateness of the model. In terms of the quality of approximation**

the rational method describes the data within less than 1% as compared to 4% of the ISO method. The corresponding ISO values are six times larger and not acceptable due to the systematic effects in the scatter indicating that the model is not correct.

Additional power and resistance due to wind according to rational evaluation

$$P_{AWind.rat} := A_{req}^{<3>} \cdot X_{req_3}$$

according to ISO/CD evaluation

Additional power and resistance due to waves according to rational evaluation

$$P_{ASeas.rat} := A_{req}^{\langle 4 \rangle} \cdot X_{req_4}$$

 $P_{ASwell.rat} := A_{req}^{<5>} \cdot X_{req_5}$

P AWaves.rat := P ASeas.rat + P ASwell.rat

according to ISO/CD evaluation

Final performance data according to rational evaluation

Reduction to the no-wind and no-wave condition

$$V_{S3_{i}} := (V_{S0.rat_{i}})^{3}$$

$$P_{B0.rat} := A_{req} \cdot X_{req} - P_{AWaves.rat} - P_{AWind.rat} + V_{S3} \cdot X_{req_{3}}$$
Rates of revolutions

$$Revs(p, V, P, N) := \begin{bmatrix} n_{i} \leftarrow last(V) \\ for \quad i \in 0...n_{i} \\ q_{0} \leftarrow P_{i} \\ q_{1} \leftarrow V_{i} \\ n \leftarrow N_{i} \\ N_{rat_{i}} \leftarrow root(q_{0} - p_{0} \cdot n^{3} + p_{1} \cdot n^{2} \cdot q_{1}, n) \end{bmatrix}$$

$$N_{rat}$$

 $n_{0.rat} := Revs(p_{rat}, V_{S0.rat}, P_{B0.rat}, n)$

Final performance data according to rational evaluation

frequency of revolution:		olution:	ship speed:			brake power:	
	0.647		V _{S0.rat} =	4.779		$\frac{P_{B0.rat}}{10^3} =$	3807
	0.6912			5.188			4620
	0.8198			6.376			7636
n _{0.rat} =	0.8746			6.878			9242
	0.9515			7.577			11860
	0.9577			7.633			12090
	0.9816			7.848			13006
	1.0329			8.307			15129

Final performance data according to ISO evaluation

frequency of revolution:		ship speed:		brake power:				
10w 01 (5,)		10w 05			IOW 05		
	0.7317	Hz	V _{S0.ISO} :=	5.230			5331	·kW
	0.7300			5.238	$\frac{m}{sec}$ P _{B0.ISO} :		5293	
	0.9267			6.852			10839	
	0.9267			6.861		D	10838	
ⁿ 0.ISO ^{:=}	1.0467			7.932		P B0.ISO :=	15582	
	1.0467			7.946			15578	
	1.0933			8.315			17945	
	1.0950			8.327			17696	

Non-dimensional values, not normalized(!), in coherent units

$$n_{0.ISO} := \frac{n_{0.ISO}}{Hz} \qquad \qquad V_{SO.ISO} := \frac{V_{SO.ISO}}{m \cdot sec^{-1}} \qquad \qquad P_{BO.ISO} := \frac{P_{BO.ISO}}{W}$$

Values can be compared directly at runs 2, 4 and 8. in these cases the velocities happen to be very nearly the same.

Normalized values Froude numbers, power ratios

$$F_{n0.rat_{i}} := \frac{V_{S0.rat_{i}}}{\sqrt{g \cdot L}} \qquad C_{P0.rat_{i}} := \frac{P_{B0.rat_{i}}}{\rho \cdot D^{2} \cdot \left(V_{S0.rat_{i}}\right)^{3}}$$

$$F_{n0.ISO_{i}} := \frac{V_{S0.ISO_{i}}}{\sqrt{g \cdot L}} \qquad C_{P0.ISO_{i}} := \frac{P_{B0.ISO_{i}}}{\rho \cdot D^{2} \cdot \left(V_{S0.ISO_{i}}\right)^{3}}$$

MS 04/09/99 18:33h

Correct(ed) rates of revolution in view of the following comparison.

The differences in magnitude and, particularly, in trend of the normalized results between the proposed rational and the proposed ISO evaluations are due to inconsistencies in the ISO procedure. To cope with them by changing the rates of revolution according to the rational power characteristic is certainly not rational.

Conclusions

The new ISO/CD 15016 example provides another test case for the rational evaluation of trials proposed. **There remain differences in the evaluations still to be analysed.**

Of course the rational method proposed does not yet cope with all the problems and details being still in its infancy and needing the joint effort and agreement of all experts before it can be established as a standard.

The advantages of the rational procedure are a minimum number of conventions and the consistent application of systems identification methods requiring no reference to model test results, as it should be.

Identifying parameters of models from observed data, even visually observed wave data, has the advantage that systematic errors in the observations are to a great extent automatically accounted for. In case of the proposed, very involved ISO method this does not apply, although it is based on the same crude wave data. This fact is the reason for the concerns about the method expressed nearly unisono by experts in shipyards and institutions.

It is important to note here that in view of the ill-conditioned problems arising there is no chance to solve the equations with do-it-yourself algorithms, singular value decomposition is an absolute requirement. In a great number of examples, based on actual data from industry, it has been shown that this procedure is superior to the traditional procedures of solving eight or ten simultaneous equations iteratively. The author has no idea how this can be done reliably!

In his contribution to the discussion of the Report of the Specialist Committee on Trials and Monitoring to the 22nd ITTC in Seoul and Shanghai September 05/11, 1999 the author fully endorses Recommendation 5 to the Conference concerning the recording of 'time histories'. Even if runs are considered stationary sound performance and confidence analyses have to be based on instantaneous values of the data.

Many problems in the evaluation of trials are due to waiting for steady conditions and using ill-defined average values. In the METEOR and CORSAIR trials quasisteady test manoeuvres have been shown to be much superior to steady testing, providing not only much more information, but at the same time the necessary references for the suppression of the omnipresent noise, even at service conditions in heavy weather.

END Rational re-evaluation of new ISO/CD 15016 example

A Sa Sep 04 18:32:37 1999