🕆 Fr Mrz 02 20:20:20 2001

Phone: +49-(0)30-392 71 64 E-mail: m.schm@t-online.de Website: http://www.t-online.de /home/m.schm

Berlin, March 02, 2001

To whom it may concern

Sub: New ISO/CD 15016 Example here: Re-evaluation according to the proposed rational method Ref.: Evaluations ISO_fin4 to _fin9.mcd and EVEREST_04 to _08.mcd

The present re-evaluation of the new ISO/CD 15016 example includes **the reduction to the no-wind and no-waves condition** according to the rational method. **In order to obtain the maximum size of the sample and to avoid the impression that data have been excluded purposely the data of all ten runs have been included.**

Following systematic scrutinity of the data during the former evaluations the power during the third run, i = 2, has been changed from $11\underline{3}49$ kW to $11\underline{5}49$ kW. Maybe there has been a misprint in the data at some stage?

Values computed according to the rational procedure are plotted in red, results of the full sample denoted by boxes, where appropriate. The values taken from ISO/CD 15016 are plotted in blue and denoted by circles.

Units	$kN := 10^3 \cdot newton$	N := newton	
		W := watt	
Constants	Field strength	$g := 9.81 \cdot m \cdot sec^{-2}$	$g := \frac{g}{m \cdot \sec^{-2}}$
Test identification	TID := "23010"	New ISO/CD 15016 ex	ample
Constants	Length of ship	L := 318·m	$L := \frac{L}{m}$
	Diameter of propeller	D := 9.5 · m	$D := \frac{D}{m}$
	Density of sea water	$\rho := 1.024 \cdot 10^3 \cdot \text{kg} \cdot \text{m}^{-3}$	$\rho := \frac{\rho}{\text{kg} \cdot \text{m}^{-3}}$
	Density of air	$\rho_{\rm A} := 1.225 \cdot \text{kg} \cdot \text{m}^{-3}$	$\rho_{\rm A} := \frac{\rho_{\rm A}}{\rm kg \cdot m^{-3}}$

Functions and subroutines

Normalise data

$$JH(V, N) := \frac{V}{D \cdot N} \qquad KP(P, N) := \frac{P}{\rho \cdot D^5 \cdot N^3}$$

$$Fn(V) := \frac{V}{\sqrt{g \cdot L}} \qquad CP(P, V) := \frac{P}{\rho \cdot D^2 \cdot V^3}$$

Basic functions

$$PS(p, N, V) := p_0 \cdot N^3 + p_1 \cdot N^2 \cdot V$$

Sort runs

Sort
$$(J_{H}, K_{P}, \psi) := |j_{0} \leftarrow 0|$$

 $j_{1} \leftarrow 0$
for $i \in 0.. last (J_{H})$
 $if \psi_{i} > \pi$
 $|S_{j_{0}, 0} \leftarrow J_{H_{i}}|$
 $S_{j_{0}, 1} \leftarrow K_{P_{i}}|$
 $j_{0} \leftarrow j_{0} + 1$
otherwise
 $|S_{j_{1}, 2} \leftarrow J_{H_{i}}|$
 $S_{j_{1}, 3} \leftarrow K_{P_{i}}|$
 $j_{1} \leftarrow j_{1} + 1$

Compute left-inverse

LeftInv(A) :=
$$r \leftarrow rows(A)$$

 $c \leftarrow cols(A)$
 $s \leftarrow svds(A)$
for $i \in 0...c - 1$
 $ISV_{i,i} \leftarrow (s_i)^{-1}$
 $UV \leftarrow svd(A)$
 $U \leftarrow submatrix(UV, 0, r - 1, 0, c - 1)$
 $V \leftarrow submatrix(UV, r, r + c - 1, 0, c - 1)$
 $A_{inv} \leftarrow V \cdot ISV \cdot U^T$
 A_{inv}

Solve cubic equations

Revs(p, V, P, N) :=
$$\begin{array}{l} n_{i} \leftarrow last(V) \\ \text{for } i \in 0 .. n_{i} \\ q_{0} \leftarrow P_{i} \\ q_{1} \leftarrow V_{i} \\ n \leftarrow N_{i} \\ N_{rat_{i}} \leftarrow root(q_{0} - p_{0} \cdot n^{3} - p_{1} \cdot n^{2} \cdot q_{1}, n) \\ N_{rat} \end{array}$$

Analyse power supplied

$$\begin{split} \text{Supplied} \Big(D, \rho, t, \psi_0, V_G, n, P \Big) &\coloneqq & \text{for } i \in 0 .. \text{ last}(t) \\ & A_{\sup_{i,1} \leftarrow} (n_i)^3 \\ A_{\sup_{i,1} \leftarrow} (n_i)^2 \cdot V_{G_i} \\ d_{FM_i} \leftarrow \text{if} \Big(\psi_{0_i} < \pi, -1, 1 \Big) \\ A_{\sup_{i,2} \leftarrow} (n_i)^2 \cdot d_{FM_i} \\ \text{for } j \in 3 .. 5 \\ A_{\sup_{i,j} \leftarrow} A_{\sup_{i,2}} \cdot (t_i)^{j-2} \\ X_{\sup} \leftarrow \text{LeftInv} (A_{\sup}) \cdot P \\ E_{\sup} \leftarrow P - A_{\sup} \cdot X_{\sup} \\ p_0 \leftarrow X_{\sup_0} \\ p_1 \leftarrow X_{\sup_0} \\ p_1 \leftarrow X_{\sup_1} \\ \text{for } j \in 0 .. 3 \\ v_j \leftarrow \frac{X_{\sup_{2+j}}}{X_{\sup_1}} \\ \text{for } i \in 0 .. \text{last}(t) \\ & V_{F, \text{rat}_i} \leftarrow \sum_{j=0}^3 v_j \cdot (t_j)^j \\ V_{S0, \text{rat}_i} \leftarrow V_{G_i} + V_{F, \text{rat}_i} \cdot d_{FM_i} \\ \end{split}$$

$$\begin{bmatrix} P_{S.rat_{i}} \leftarrow PS(p, n_{i}, V_{S0.rat_{i}}) \\ J_{H.rat_{i}} \leftarrow JH(V_{S0.rat_{i}}, n_{i}) \\ K_{P.rat_{i}} \leftarrow KP(P_{S.rat_{i}}, n_{i}) \\ \begin{bmatrix} E_{sup} & V_{F.rat} & V_{S0.rat} & P_{S.rat} & J_{H.rat} & K_{P.rat} & p & v \end{bmatrix}$$

Analyse power required

$$\begin{split} & \operatorname{Required}\left(V_{S0}, P_{S}, \operatorname{Env} \right) \coloneqq \quad V_{WindR} \leftarrow \left(\operatorname{Env}_{0,0} \right)_{0,0} \\ & \Psi_{WindR} \leftarrow \left(\operatorname{Env}_{0,1} \right)_{0,0} \\ & \Psi_{SeasR} \leftarrow \left(\operatorname{Env}_{0,1} \right)_{0,1} \\ & H_{Seas} \leftarrow \left(\operatorname{Env}_{0,2} \right)_{0,2} \\ & V_{SwellR} \leftarrow \left(\operatorname{Env}_{0,2} \right)_{0,0} \\ & \Psi_{SwellR} \leftarrow \left(\operatorname{Env}_{0,2} \right)_{0,2} \\ & \Psi_{SwellR} \leftarrow \left(\operatorname{Env}_{0,2} \right)_{0,2} \\ & \text{for } i \in 0 \dots \operatorname{last} \left(V_{S0} \right) \\ & \text{for } j \in 0 \dots 2 \\ & \operatorname{A} \operatorname{req}_{i,0} \leftarrow \left(V \operatorname{So}_{i} \right)^{j+1} \\ & V \operatorname{WindRx}_{i} \leftarrow V \operatorname{WindR}_{i} \cdot \operatorname{VSo}_{i} \\ & V \operatorname{SeasRx}_{i} \leftarrow \operatorname{SeasR}_{i} \cdot \operatorname{Cos} \left(\Psi \operatorname{WindR}_{i} \right) \\ & \operatorname{A} \operatorname{req}_{i,4} \leftarrow \left(\operatorname{H} \operatorname{Seas}_{i} \right)^{2} \cdot V \operatorname{SeasRx}_{i} \cdot V \operatorname{SeasR}_{i} \cdot V \operatorname{So}_{i} \\ & V \operatorname{SwellRx}_{i} \leftarrow V \operatorname{SwellR}_{i} \cdot \operatorname{Cos} \left(\Psi \operatorname{SwellR}_{i} \right) \\ & \operatorname{A} \operatorname{req}_{i,5} \leftarrow \left(\operatorname{H} \operatorname{Swell}_{i} \right)^{2} \cdot V \operatorname{SwellRx}_{i} \cdot V \operatorname{SwellR}_{i} \cdot V \operatorname{So}_{i} \\ & V \operatorname{SwellRx}_{i} \leftarrow V \operatorname{SwellR}_{i} \operatorname{Cos} \left(\Psi \operatorname{SwellR}_{i} \right) \\ & \operatorname{A} \operatorname{req}_{i,5} \leftarrow \left(\operatorname{H} \operatorname{Swell}_{i} \right)^{2} \cdot V \operatorname{SwellRx}_{i} \cdot V \operatorname{SwellR}_{i} \cdot V \operatorname{So}_{i} \\ & V \operatorname{SwellRx}_{i} \leftarrow V \operatorname{SwellRx}_{i} \cdot V \operatorname{SwellR}_{i} \cdot V \operatorname{SwelR}_{i} \cdot V \operatorname{SwelR}_{i}$$

MS 02/03/01 20:21h

$$P_{ASwell} \leftarrow A_{req}^{<5>} \cdot X_{req_{5}}$$

$$P_{AWaves} \leftarrow P_{ASeas} + P_{ASwell}$$
for $i \in 0... last (V_{S0})$

$$P_{AAir_{i}} \leftarrow (V_{S0})^{3} \cdot X_{req_{3}}$$

$$P_{S0} \leftarrow P_{S} - P_{AWaves} - P_{AWind} + P_{AAir}$$

$$\begin{bmatrix} E_{req} & P_{AWind} & P_{AWaves} & P_{S0} \end{bmatrix}$$

Compute relative wave motion

$$\begin{aligned} \text{Relative}\left(V_{\text{G}}, \text{T}, \psi\right) &\coloneqq & \text{for } i \in 0 \dots \text{last}\left(V_{\text{G}}\right) \\ & V \leftarrow \frac{g \cdot T_{i}}{2 \cdot \pi} \\ & V_{\text{Rx}} \leftarrow V_{\text{G}_{i}} + V \cdot \cos\left(\pi + \psi_{i}\right) \\ & V_{\text{Ry}} \leftarrow V \cdot \sin\left(\pi + \psi_{i}\right) \\ & V_{\text{Ry}} \leftarrow V \cdot \sin\left(\pi + \psi_{i}\right) \\ & V_{\text{R}_{i}} \leftarrow \sqrt{V_{\text{Rx}}^{2} + V_{\text{Ry}}^{2}} \\ & \psi_{\text{R}_{i}} \leftarrow \text{angle}\left(V_{\text{Rx}}, V_{\text{Ry}}\right) \\ & \left[V_{\text{R}} \quad \psi_{\text{R}}\right] \end{aligned}$$

Power supplied

Data reported from traditional trial measurements

time row	e: 48		courses row 3	:		speed or row 4	over gro	ound:	rate row	of revolı 5	ution:	shaft power row 6		
	16.792			5.901			4.409			0.7317			5711]
	18.830			2.909			5.561			0.7300			5533	
	20.826			5.901			6.050			0.9267			11349	
	23.053			2.909			7.182			0.9267			11140	
4	24.986	1		5.901		V	7.218	m		1.0467	11-	D	16200	1-337
t :=	26.682	•nr	Ψ 0 :=	2.909	∙rad	v G :=	8.082	sec	n :=	1.0467	∙HZ	P S :=	16190	·ĸw
	30.597			2.909			8.416			1.0933			18500	
	32.433			5.901			7.773			1.0950			18330	
	34.231			2.909			8.437			1.1167			19450	
	35.849			5.901			7.922			1.1133			19756	

$P_{S_2} := 11549 \cdot kW$ This value is being modified!

Data non-dimensionalized in view of further use in some mathematical subroutines, which by definition cannot handle arguments with (different) dimensions

$$t := \frac{t}{hr} \qquad \qquad \psi_0 := \frac{\psi_0}{rad} \qquad \qquad V_G := \frac{V_G}{m \cdot sec^{-1}} \qquad n := \frac{n}{Hz} \qquad P_S := \frac{P_S}{W}$$
$$t_m := mean(t) \qquad t := t - t_m$$

Normalised data

 $i = 0 \dots last(t)$

$$J_{H_i} := JH(V_{G_i}, n_i) \qquad K_{P_i} := KP(P_{S_i}, n_i)$$

First check of consistency

$$J_{H.0} := Sort (J_H, K_P, \psi_0)^{<0>} \qquad K_{P.0} := Sort (J_H, K_P, \psi_0)^{<1>}$$
$$J_{H.1} := Sort (J_H, K_P, \psi_0)^{<2>} \qquad K_{P.1} := Sort (J_H, K_P, \psi_0)^{<3>}$$

Input data for statistical analysis: all possible subsets of nine runs

$$i := 0 .. last(t)$$

$$j := 0 .. last(t) - 1$$

$$K_{j,i} := if(j < i, j, j + 1)$$

$$t S_{j,i} := t_{K_{j,i}} \qquad \Psi \ 0S_{j,i} := \Psi \ 0_{K_{j,i}} \qquad V \ GS_{j,i} := V \ G_{K_{j,i}} \qquad n \ S_{j,i} := n_{K_{j,i}} \qquad P \ SS_{j,i} := P \ S_{K_{j,i}}$$

Evaluation

Res
$$\sup_{i} :=$$
 Supplied $(D, \rho, t_{S}^{}, \psi_{0S}^{}, V_{GS}^{}, n_{S}^{}, P_{SS}^{})$

$$\begin{bmatrix} E^{\langle i \rangle} & V_{F,ratS}^{\langle i \rangle} & V^{\langle i \rangle} & P^{\langle i \rangle} & J_{H,ratS}^{\langle i \rangle} & K_{P,ratS}^{\langle i \rangle} & p_{ratS}^{\langle i \rangle} & v_{ratS}^{\langle i \rangle} \end{bmatrix} := \operatorname{Res}_{supS_{i}}$$

$$\operatorname{Res}_{sup} := \operatorname{Supplied}(D, \rho, t, \psi_{0}, V_{G}, n, P_{S})$$

$$\begin{bmatrix} E_{sup} & V_{F,rat} & V_{S,rat} & P_{S,rat} & J_{H,rat} & K_{P,rat} & p_{rat} & v_{rat} \end{bmatrix} := \operatorname{Res}_{sup}$$

Second check of consistency

These two results of all possible subsets of nine runs show, that after correction of the 'misprint' the data are consistent.

Interpolations

m := 36 k := 0.. m

$$t_{rat_{k}} \coloneqq \min(t) + \frac{(\max(t) - \min(t))}{m} \cdot k$$
$$V_{F.rat_{k}} \coloneqq \sum_{l=0}^{3} v_{rat_{l}} \cdot (t_{rat_{k}})^{l}$$
$$J_{H.rat_{i}} \coloneqq JH \left(V_{S.rat_{i}}, n_{i} \right)$$

Final performance data according to ISO evaluation

frequency of revolution: row 61 (5)		ship speed: row 65			brake power: row 63			
	0.7317			5.230			5331]
	0.7300		V _{S0.ISO} :=	5.238	$\frac{m}{sec}$ P SO.ISO :=		5293	
n 0.ISO := 0.92 0.92 1.04 1.04 1.04 1.09 1.09 1.11 1.11	0.9267	·Hz		6.852		10839		
	0.9267			6.861		P S0.ISO :=	10838	·kW
	1.0467			7.932			15582	
	1.0467			7.946			15578	
	1.0933			8.315			17945	
	1.0950			8.327			17696	
	1.1167			8.501			18606	
	1.1133			8.480			19022	

Non-dimensional values, not normalized(!), in coherent units

n 0.ISO :=
$$\frac{n 0.ISO}{Hz}$$
 V S0.ISO := $\frac{V S0.ISO}{m \cdot sec^{-1}}$ P S0.ISO := $\frac{P S0.ISO}{W}$

Normalised values

$$i := 0 \dots last (n \ 0.ISO)$$

$$J \ H0.ISO_{i} := JH (V \ S0.ISO_{i}, n \ 0.ISO_{i})$$

$$K \ P0.ISO_{i} := KP (P \ S0.ISO_{i}, n \ 0.ISO_{i})$$

ISO/CD results:

current at each run: row 52

$$V_{F.ISO} := \begin{bmatrix} 0.494 \\ 0.527 \\ 0.525 \\ 0.484 \\ 0.442 \\ 0.404 \\ 0.324 \\ 0.296 \\ 0.273 \\ 0.275 \end{bmatrix} \cdot \underbrace{m}_{sec} V_{F.ISO} := \frac{V_{F.ISO}}{m \cdot sec^{-1}}$$

Plots of results

Attention! At this stage the power has not yet been reduced to the no wind and no wave conditon in the rational evaluation while it has been reduced in the traditional evaluation! But these results already show, that the results according to the proposed ISO procedure are outside the law of the shaft power.

0.17

0.166

0.65

0.75

J H.O, J H.1, J H.rat, J H.rat, J HO.ISO

0.7

0.8

0.85

Power required Relative wind measured

relative wind velocity: row 7			relative wi row 8	relative wind direction: row 8			
V WindR :=	13.5	. m sec		-0.1745]		
	4.0			2.5307	∙rad		
	15.0			-0.1745			
	2.8			2.3562			
	16.0			0.0873			
	0.7		Ψ WindR	2.6180			
	0.4			2.3562			
	16.5			0.0873			
	0.0			2.5307			
	16.5			-0.1745			

Non-dimensional values, not normalized(!), in coherent units

V 7	V WindR		♥ WindR
V WindR :=	m·sec ⁻¹	Ψ WindR $=$	rad

Sea state observed

mean wave period (seas) row 12		significant wave height (seas) incident angle of w row 13 row 14					wave (seas)	
	3.90			1.00			2.97	
T _{Seas} :=	3.90		H _{Seas} :=	1.00			- 0.17	
	3.90			1.00			2.97	
	3.90			1.00			-0.17	
	3.90	·sec		1.00			2.97	
	3.90			1.00	\cdot m ψ Seas !=	Ψ Seas ^{:=}	-0.17	
	2.80			0.50			-0.17	
	2.80			0.50			2.97	
	2.80			0.50			-0.17	
	2.80			0.50			2.97	
T _{Seas} :=	T Seas		H _{Seas} :=	H Seas	-			
$\begin{bmatrix} V_{SeasR} & \psi_{SeasR} \end{bmatrix} \coloneqq \text{Relative} \begin{pmatrix} V_G, T_{Seas}, \psi_{Seas} \end{pmatrix}$								

Swell state observed

mean wave period (swell) row 15			significant wave height (swell)incident angle of wave (swe row 16 row 17					swell)
	10.59			2.00			0.6981	
T _{Swell} :=	10.59		H Swell :=	2.00	·m Ψ Swell :=	- 2.4435		
	10.59			2.00		0.6981		
	10.59			2.00		- 2.4435		
	11.32			2.50			0.6981	
	11.32	·sec		2.50		Ψ Swell =	-2.4435	
	11.32			2.50			-2.4435	
	11.32			2.50		0.6981		
	11.32			3.00			-2.4435	
	11.32			3.00			0.6981	
T _{Swell} := .	T Swell sec		H _{Swell} := .	H Swei m	<u> </u>			

 $\begin{bmatrix} V_{SwellR} & \psi_{SwellR} \end{bmatrix} \coloneqq \text{Relative} \begin{pmatrix} V_{G}, T_{Swell}, \psi_{Swell} \end{pmatrix}$

Input data for statistical analysis

Wind := $\begin{bmatrix} V_{WindR} & \psi_{WindR} \end{bmatrix}$ Seas := $\begin{bmatrix} V_{SeasR} & \psi_{SeasR} & H_{Seas} \end{bmatrix}$ Swell := $\begin{bmatrix} V_{SwellR} & \psi_{SwellR} & H_{Swell} \end{bmatrix}$ Env := (Wind Seas Swell)

Evaluation

Res _{req} := Required
$$(V_{S.rat}, P_{S}, Env)$$

 $\begin{bmatrix} E_{req} & P_{AWind.rat} & P_{AWaves.rat} & P_{S.rat} \end{bmatrix}$:= Res _{req}

Plots of results

Power residua

After six runs the trials had to be stopped for a while in view of the large swell height due to the passing of a typhoon!

resistance increase due to wind row 29:

Additional power and resistance due to wind

$$R_{AWind.ISO} := \frac{R_{AWind.ISO}}{N}$$

$$P_{AWind.ISO_i} := \frac{R_{AWind.ISO_i} \cdot V_{S.rat_i}}{\eta_D}$$

31.4

according to ISO/CD evaluation

resistance increase due to waves row 30:

$$R_{AWaves.ISO} := \frac{R_{AWaves.ISO}}{N}$$
$$R_{AWaves.ISO_{i}} \cdot V_{S.rat_{i}}$$

$$P_{AWaves.ISO_i} := \frac{\eta_D}{\eta_D}$$

$$R_{AWaves.ISO} := \begin{bmatrix} 111.8 \\ 31.4 \\ 106.9 \\ 31.4 \\ 182.6 \\ 180.1 \\ 7.9 \\ 264.7 \\ 7.9 \end{bmatrix} \cdot 10^3 \cdot N$$

Actually only runs 8 and 9 needed to be disregarded!

Fairing

$$i := 0 \dots last(t) - 3 \qquad j := 0 \dots 3 \qquad \text{cubic 'spline'!}$$
$$A_{i,j} := \left(V_{S.rat_i} \right)^j \qquad B_i := P_{S.rat_i}$$

 $X := LeftInv(A) \cdot B$

Interpolating

$$V_{S0.rat_{k}} := \min(V_{S.rat}) + \frac{\max(V_{S.rat}) - \min(V_{S.rat})}{m} \cdot k$$
$$A_{k,j} := (V_{S0.rat_{k}})^{j}$$
$$P_{S0.rat} := A \cdot X$$
$$n_{rat_{k}} := 1 \qquad \text{initial values}$$

Final performance

Final performance data according to rational evaluation

 $n_{0.rat} := \text{Revs}(p_{rat}, V_{S0.rat}, P_{S0.rat}, n_{rat})$

Normalized values

Advance ratios, power ratios

$$J_{H0.rat_{k}} := JH \left(V_{S0.rat_{k}}, n_{0.rat_{k}} \right)$$

$$K_{P0k.rat_{k}} := KP \left(P_{S0.rat_{k}}, n_{0.rat_{k}} \right)$$

$$p := 0..1$$

$$J_{H0.rat_{0}} := min \left(J_{H0..rat} \right)$$

$$K_{P0.rat_{0}} := max \left(K_{P0k.rat} \right)$$

$$J_{H0.rat_{1}} := max \left(J_{H0..rat} \right)$$

$$K_{P0.rat_{1}} := min \left(K_{P0k.rat} \right)$$

 $J_{H0.ISO_i} := JH(V_{S0.ISO_i}, n_{0.ISO_i})$ Froude numbers, power numbers

[k/

$$K_{P0.ISO_{i}} := KP(P_{S0.ISO_{i}}, n_{0.ISO_{i}})$$
$$C_{P0.rat_{k}} := CP(P_{S0.rat_{k}}, V_{S0.rat_{k}})$$

$$\begin{array}{l} F_{n0.rat_{k}} \coloneqq Fn \Big(V_{S0.rat_{k}} \Big) \\ F_{n0.ISO_{i}} \coloneqq Fn \Big(V_{S0.ISO_{i}} \Big) \\ \end{array} \begin{array}{l} C_{P0.rat_{k}} \coloneqq CP \Big(P_{S0.rat_{k}}, V_{S0.rat_{k}} \Big) \\ C_{P0.ISO_{i}} \coloneqq CP \Big(P_{S0.ISO_{i}}, V_{S0.ISO_{i}} \Big) \\ \end{array}$$

Plots of final results

MS 02/03/01 20:21h

END Rational re-evaluation of new ISO/CD 15016 example

🖹 Fr Mrz 02 20:20:20 2001